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Abstract— Humans are error-prone in the presence of multi-
ple similar tasks. While Human-Robot Collaboration (HRC)
brings the advantage of combining the superiority of both
humans and robots in their respective talents, it also requires
the robot to communicate the task goal clearly to the human col-
laborator. We formalize such problems in interactive assembly
tasks with hidden goal Markov decision processes (HGMDPs) to
enable the symbiosis of human intention recognition and robot
intention expression. In order to avoid the prohibitive computa-
tional requirements, we provide a myopic heuristic along with
a feature-based state abstraction method for assembly tasks
to approximate the solution of the resulting HGMDP. A user
study with human subjects in round-based LEGO assembly
tasks shows that our algorithm improves HRC and helps the
human collaborators when the task goal is unclear to them.

I. INTRODUCTION

Manufacturers often find it uneconomic to customize
assembly robots for tasks with only minor differences. In
such scenarios, it is ideal to have humans working side
by side with robots and carry out the distinct part of the
task that cannot be done by the robot alone. However, such
collaboration is susceptible to the ambiguity of the tasks and
the imperfect memory of humans. Thus, the robot needs to
make its intention clear to the human, ideally without verbal
communication, as installing communication modules for the
robots can as well be uneconomic.

For example, consider an assembly robot that is limited
to a set of nonverbal actions, how should it behave to
“tell” the human collaborator which task to carry out? More
specifically, given a partially accomplished task and the
observed actions of the human collaborator, how can the
robot make its next actions intent-expressive, or legible? To
answer this question, we need to first understand how human
beings interpret actions of other agents.

Research in psychology suggests that human beings tend
to interpret actions as goal-directed [1], [2], i.e. humans
attribute goals to other agents, including robots [3], as the
causes of their actions. One assumption of action under-
standing, known as teleological reasoning [1], is based on
the principle of rational action [4], which states that actions
function to realize goal-states by the most efficient means
available. This suggests a formulation of action understand-
ing as inverse planning or inverse reinforcement learning
(IRL) [5], [6], [7], where efficiency is defined as maximizing
the reward or minimizing the cost the agent receives in the
environment. Taking a probabilistic perspective, Baker et
al. proposed in [8] a framework based on Markov decision
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process (MDP) for action understanding and use Bayesian
inference to compute the posterior probability of a goal,
conditioned on observed actions and the environment.

Based on these research results, legibility as a property of
actions can be characterized. Dragan et al. [9], [10] define a
legible motion as one that enables an observer to quickly and
confidently infer the correct goal. They point out that while
legibility and predictability sometimes can be correlated, they
are not the same. A predictable motion is formalized as mo-
tion that matches the human collaborator’s expectation given
a goal. That is, it is efficient with respect to the given cost
or reward function for the goal, but a legible motion can be
and is usually inefficient. Stulp et al. [11] show that legible
motions can also be generated using Policy Improvement
through Black-Box optimization (PIBBO) [12], a model-
free reinforcement learning approach, without knowing the
underlying cost functions. They improve the robot’s motion
through direct trial-and-error interactions with humans to
decrease the time the humans need to infer the correct goal.

In this paper, we extend the notion of legibility to multi-
step human-robot cooperative assembly tasks where the
assembly process is viewed as a sequential decision-making
problem similar to the ones studied in [13], [14]. The robot
is required to establish a legible policy—a mapping from
system states to actions—such that the human collaborator
can infer the unknown task goal correctly from the partially
built object as early as possible without verbal communica-
tion. We will refer to this as the nonverbal legible assembly
problem in later discussion.

In contrast to motion planning, the “trajectory” of assem-
bly tasks is the building process of the object, which is
modeled in a discrete state space and affected not only by
the robot but also by the human collaborator. Therefore, it
is necessary for the robot to infer the human collaborator’s
expectation of the task goal and adjust its policy accordingly.
As legible actions can be inefficient, we argue that employing
legible policies only when the human collaborator has a
wrong expectation of the task goal, can avoid unnecessary
inefficiency. Moreover, inference of the human collaborator’s
expectation of the task goal is beneficial especially in sce-
narios where multiple goals are present, as disambiguating
multiple goals simultaneously can be hard. A more practical
strategy is to compute the probability distribution over the
human collaborator’s expectation of the task goal and then
choose the legible policy such that only the wrong goal
expectation with the highest probability is deviated from.

Our contribution in this work is to unify human intention
recognition and robot intention expression in one framework
by modeling the nonverbal legible assembly problem as a



hidden goal Markov decision process (HGMDP) [15], a spe-
cial class of partially observable Markov decision processes
(POMDPs), where the goal is the only partially observable
state variable. On the basis of the underlying task-related
cost, or reward, we construct a special form of reward func-
tion that promotes legibility, drawing analogy from previous
work of Dragan et al.. The robot then maximizes the total
reward of legibility it collects during the assembly process.

As solving a finite-horizon HGMDP is PSPACE-complete
even for deterministic dynamics [15], another contribution
of this work is to propose a myopic heuristic: we first
learn legible policies offline in reduced fully observable
MDPs, and then estimate the current human collaborator’s
expectation of the goal online through belief updates in the
original HGMDP and adjust the robot’s policy accordingly.
In addition, we introduce a systematic way of state abstrac-
tion for assembly tasks to further limit the size of the state
space.

In the remainder of this paper, we first illustrate in
more detail the proposed framework in Section II and the
state abstraction method in Section III. Then, we describe
the human subject experiment and analyze the results in
Section IV. Finally, we conclude this paper in Section V.

II. NONVERBAL LEGIBLE ASSEMBLY PROBLEM

We consider a nonverbal legible assembly problem in
which the “robot”, R, has full knowledge of the task goal,
while the “human”, H, does not. Moreover, R does not
observe H’s expectation of the goal directly; rather, it only
knows a set of possible goals of H and has to infer it from
H’s actions during the assembly process. R maintains a
probability distribution over the possible goal expectations
of H and exploits this information to make the actual goal
clear to H through its actions without verbal communication.

A. Model Overview

Formally, we model the problem as a HGMDP. Using a
factored representation similar to [16], we define it as a tuple
M = (X ,Y, IY ,AR,AH,O, TX , TY , Z,RR, RH, RL, �, y⇤).

X is a finite set of fully observable task states x 2 X ; Y is
a finite set of partially observable states y 2 Y representing
the goal expectation of H, whose prior distribution IY (y) =
P (y) is given; y⇤ 2 Y denotes the actual task goal which
is known beforehand only to R. AR is a set of actions for
R and A

H is a set of actions for H that can be observed by
R, i.e. the set of observations O = A

H. TX(x, y, aR, x0) =
P (x0

|x, y, aR) and TY (x, y, aR, x0, y0) = P (y0|x, y, aR, x0)
are factored transition probability functions of the system.

A transition in this HGMDP proceeds as follows: given
a system state (x, y) 2 X ⇥ Y , R makes an action aR

2

A
R, resulting in an intermediate task state x̃. Then H

makes an action aH
2 A

H according to a stochastic policy
⇡H(x̃, y, aH) = P (aH

|x̃, y) 7! [0, 1] and this leads to the next
state (x0, y0). We assume that the transition of task states
is deterministic with respect to the actions aR and aH; the
uncertainty arises rather from H’s policy.

In modeling the system, we only look at the states where
R needs to make a decision; the intermediate states and the
effect of H’s actions are implicitly modeled in the transition
probabilities of the system; hence H is modeled as part of
the environment. For simplicity of notation, it is assumed that
the task state x0 also encodes the preceding human action aH.

Now, R is required to maximize a special form of reward
RL promoting legibility in the dynamics defined above. The
total reward is discounted in time by the factor � to give less
weight to rewards collected in future. To formally define RL,
we first introduce two intrinsic reward functions of the task
to characterize rational, or efficient actions.
RR(x, y, aR) and RH(x, y, aH) denote the reward respec-

tively for R and H taking the action aR or aH in state (x, y).
This reward is composed of a high-level reward that promotes
similarity towards the goal y and a low-level physical reward
associated with the specific action. Hence, actions can have
different rewards due to their energy consumption, difficulty,
or safety, even if they have the same impact on the similarity
towards the task goal.

B. Reward of Legibility

Actions with high rewards defined above are greedily
efficient; however, we want R also to take inefficient actions
that can make the actual goal clear when H has a wrong
goal expectation. To do that, we derive a reward function of
legibility RL for R from the principle of rational action, i.e.
H interprets R’s action by assuming R is acting efficiently
towards the task goal

P (aR
|x, y) / exp

�
�1R

R(x, y, aR)
�
, (1)

where �1 is a parameter that H assumes how strictly R
follows the principle of rational action.

Note that the policy for R assumed above by H is only
optimal in one step; for R to achieve maximal accumulated
reward till the termination, the corresponding POMDP must
be solved. However, it is highly unlikely that H would have
such computational capacity; therefore, we assume that it
only considers a greedily efficient policy for R.

We assume that H does not infer the unknown goal from
the whole trajectory at every time step; rather, it infers only
based on the current state-action pair and tends to believe
what it already believes, which is known as belief perse-
verance [17] or cognitive inertia [18] in cognitive science.
Thus, the system can be represented as a dynamic Bayesian
network (DBN) as depicted in Fig 1.

Given the actual task goal y⇤, R should choose an action
aR in state (x, y) that increases the probability P (y⇤|x, y, aR)
while decreasing P (y0|x, y, aR), 8y0 6= y⇤, yielding a reward
function of the form

RL(x, y, aR) = P (y⇤|x, y, aR) � �
X

y02Y\{y⇤}

P (y0|x, y, aR) ,

(2)
where � is a tuning parameter that determines how much a
wrong expectation should be penalized.

Considering the effect of cognitive inertia that H tends to



Fig. 1. The system structure as a dynamic Bayesian network. Shaded nodes
are partially observable.

believe y0 more if y0 = y, we define

P (y0|x, y, aR) /

(
pcP (y0|x, aR), if y = y0

1�pc
|Y|�1P (y0|x, aR), otherwise

(3)

where 1
|Y| 6 pc 6 1 denotes a coefficient indicating

how much the human sticks to its previous belief. The
probabilities above are computed using Bayes’ theorem

P (y0|x, aR) / P (aR
|x, y0)P (y0|x) . (4)

C. Goal Inference

The goal inference in HGMDP is achieved by updating
the distribution of y at each transition according to

b0(y0) / Z(x0, y0, aR, o)
X

y

TXY (x, y, aR, x0, y0)b(y) , (5)

where

TXY (x, y, aR, x0, y0) = TX(x, y, aR, x0)TY (x, y, aR, x0, y0)
(6)

and Z(x0, y0, aR, o) = P (o|x0, y0, aR) is the probability of
observing o in state (x0, y0) after R taking action aR in state
(x, y).

Recall that we encode the preceding human action in x0;
hence, the observation function Z(x0, y0, aR, o) is determin-
istic

Z(x0, y0, aR, o) = P (o|x0, y0, aR) =

(
1, if o = aH

0, otherwise
. (7)

It can be easily seen from the DBN that x0 and y0 are
conditionally independent given x, y, aR. Thus, we obtain the
transition probability

TY (x, y, aR, x0, y0) = P (y0|x, y, aR) . (8)

Furthermore, we assume that H always acts greedily
efficiently according to its goal expectation

⇡H(x, y, aH) / exp
�
�2R

H(x, y, aH)
�
, (9)

where �2 is a parameter that controls how strictly H follows
the principle of rational action.

Since the uncertainty of the task state transition comes
only from H, the transition probability is simply

TX(x, y, aR, x0) = P (x0
|x, y, aR) = ⇡H(x̃, y, aH) , (10)

where x̃ is the intermediate state reached by R taking action

aR in state (x, y) and x0 by H taking action aH in state (x̃, y).

D. Myopic Heuristic

An optimal legible policy ⇡L(x, b(y), aR) 7! [0, 1] selects
actions for R to achieve the maximal accumulated reward
of legibility. Unfortunately, solving HGMDPs is PSPACE-
complete even for deterministic dynamics. Therefore we will
not seek exact solutions of this HGMDP; rather, we employ
a myopic heuristic to approximate the legible policies. To
that end, we first learn the optimal legible policy under each
wrong goal expectation of the human collaborator and then
switch between those policies according to the current belief
state b(y) of the original HGMDP.

When H has a fixed wrong goal expectation yi 6=
y⇤, the HGMDP is reduced to an MDP Mi =
(X ,Yi,AR,AH, Ti, RL, �) where Yi = {y⇤, yi} and

Ti = P (x0, y0|x, y, aR) =

(
⇡H(x̃, yi, aH), if y0 = yi
0, if y0 6= yi

,

(11)
where x̃ is the intermediate task state reached by executing
aH in state x.

In defining the reward of legibility, we still assume that
H will virtually change its mind despite our assumption of
fixed wrong goal expectation

RL,i(x, yi, a
R) = P (y⇤|x, yi, a

R) � �P (yi|x, yi, a
R) . (12)

We apply a standard Q-learning [19] algorithm to solve
Mi associated with each possible wrong goal expectation.
An episode of Q-learning terminates when the probability
P (y⇤|x, aR) exceeds a threshold pth or the actual goal is
achieved. Thus, we obtain a legible policy ⇡̂L(x, yi, aR) for
each wrong goal expectation yi.

Recall that the distribution of Y can be updated by (5)
at each time step, which allows us to adjust the policy
accordingly. A simple heuristic can be obtained as

⇡L(x, b(y), aR) = ⇡̂L(x, argmax
y2Y\{y⇤}

b(y), aR) . (13)

That is, R acts under the assumption that H’s expectation
of the task goal is the one with the highest probability. For
general POMDPs, such heuristics suffer from poor perfor-
mance if the uncertainty is high in the belief state [20], as
the robot will not actively take information gathering actions
on the hidden states. To alleviate this, some algorithms [21],
[22] incorporate entropy information in the reward structure
to encourage the POMDP agent to take actions that decrease
the entropy of the belief state. However, our problem involves
a special case that the legible actions are in fact “information
gathering” in the sense that they increase the probability of
the actual goal being inferred by H.

As legible actions can be inefficient, we let the robot
switch to the greedily efficient policy once the probability
assigned to the actual goal reaches a certain threshold, so as
to prevent unnecessarily inefficient actions.



III. FEATURE-BASED STATE ABSTRACTION

In order to alleviate the effect of curse of dimensional-
ity [23], we provide a feature-based state abstraction method
for assembly tasks. An assembly task can be seen as a
combination of objects at the corresponding positions. We
call a correct object-position pair a component c and rep-
resent an assembly task as a set of its components T =
{c1, c2, ...}. In a nonverbal legible assembly problem, the
human collaborator is faced with multiple possible tasks
T = {T1, T2, ...}, from which we obtain the set of all task
components C =

S|T |
i=1 Ti. For each component ci, we can

find the set of tasks to which it belongs Pi = {Tj |ci 2 Tj},
to which we refer as parents of ci. It is not hard to see
that different components can have the same parents, i.e.
Pm = Pn. We define an equivalence relation for such
components

R =
n

(cm, cn)|Pm = Pncm, cn 2 C

o
. (14)

A partition ⇧ of C can then be obtained as ⇧ = {[c]R|c 2
C} with [c]R denoting the equivalence class of c with respect
to R and we call these equivalent classes subtasks. For
simplicity of notation, we rewrite the equation as

⇧ = {Ei|i 2 {1, 2, 3, ...|⇧|}} , (15)

where Ei denotes the subtasks for i 2 {1, 2, 3, ...|⇧|}.
Given an arbitrary task state x 2 X and its corresponding

ongoing task Tx as a set of the components built in state x,
we count the number of built components for each subtask
and represent the task state with these numbers. Formally,
we define the following features

�i : x 7! |Ei \ Tx|, (16)

where x 2 X and i 2 {1, 2, 3, ...|⇧|}.
Recall that we define a component as a correct object-

position pair. Hence, a missing component can result either
from a wrong object or a wrong position besides solely
vacancy. We call such wrong object-position pairs errors
and denote the number of errors by an extra feature �e(x).
Here we assume that the number of errors is bounded by a
maximal value Me. Together, the task state can be aggregated
to R|⇧|+1 by a feature function

�(x) : x 7!
⇥
�e(x),�1(x),�2(x), . . . ,�|⇧|(x)

⇤T (17)

From the abstract task state, a corresponding abstraction
for actions follows naturally: we use ai and āi to represent
actions of increasing and decreasing �i(x) respectively and
ae and āe for making and correcting an error.

IV. EXPERIMENTS

In this section we evaluate the proposed HGMDP in a
real Human-Robot Collaboration (HRC)-scenario based on
an exemplary dyadic pick-and-place experiment with 10
individual subjects (µage = 26.47 years; µbackground = 2.3
on a three-point Likert scale ranging from no to professional
robotics background).

Fig. 2. HRC LEGO-assembly scenario with the goal being unknown to
the human collaborator. Participants are asked to give their belief over the
possible task goals via the sliding bar on the projected GUI.

(a) Scenario 1 (b) Scenario 2
Fig. 3. Visualization of three pick-and-place goals for the two task
scenarios. The subtasks Ei for state abstraction are visualized by color.

A. Experimental Setup
We designed two pick-and-place scenarios in which three

different tasks with overlapping subtasks according to (15)
are given, as depicted in Fig. 3.

The experimental setup depicted in Fig. 3(b) was charac-
terized by having distinct, overlapping and shared subtasks,
whereas in the task scenario shown in Fig. 3(a) no task had
a distinct subtask. Each run was assembled by dyads in a
round-based manner with the robot acting first. In order to
collect consequent user feedback, a GUI was projected upon
the workspace from top as shown in Fig. 2, which was used
to obtain the human action aH and self-evaluated belief y
over the task goals.

As solely asking for accomplishing the goal would result
in barely any difference between the different policies men-
tioned above, the dyads were asked to assemble the given
shape most efficiently, i.e. with the minimum overall travel-
distance. This allows the investigation on our claim that a
robot can deviate from the efficient policy to decrease the
uncertainty of the human collaborator’s belief over the task
goals.

We compared three robot decision-making modes:
• efficient (E) In this mode the robot was acting purely

efficiently, regardless of the human collaborator’s belief,
thus assembling the closest component at every step.

• legible (L) In this mode the HGMDP was applied as
outlined in section II.

• legible with user feedback (LF) In this mode the HGMDP
was partially applied. In contrast to L, the user-feedback
replaced the HGMDP belief estimation.

B. Experimental Procedure
Upon arrival, all participants signed an informed consent

form and were surveyed about their background. After this,
the experimental setup was explained to the subjects in the
form of written text, experimental trials as well as training
examples until the subject agreed upon continuation.



Each participant conducted 18 experimental runs such that
each decision-making mode was performed 6 times and each
scenario 9 times in no particular order. At the end of every
assembly task, the participants were asked to answer the
questionnaire shown in Table I in a five-point Likert scale.
Additionally, the subjects were asked to rate their belief of
the task goals after each robot’s action via the GUI (Fig. 2).

C. Hypotheses

We propose the following 4 hypotheses upon designing
our algorithm to point out the performance and potential:

H1 - Participants will agree more strongly that the robot’s
actions are helpful and efficient in mode L or LF compared to
E. We claim that the efficiency and helpfulness of the robot’s
actions perceived by the human collaborator is improved by
the robot acting efficiently when possible and only selecting
legible but inefficient actions when the human collaborator’s
false belief requires it.

H2 - Participants will agree more strongly that the robot’s
actions are responsive in mode L or LF compared to E. We
claim that the proposed framework allows the robot to adjust
its policy according to the inferred goal expectation of the
human collaborator, leading to more responsive actions.

H3 - Participants’ belief over the goal will converge faster
to the correct goal in mode L or LF compared to E. We claim
that the legible policies applied by our framework enable the
participants to infer the actual task goal more quickly.

H4 - The overall error rate will be lower in mode L or
LF compared to E. We claim that an early intervention due
to the legible policies helps the human collaborator recover
from a wrong belief, thus resulting in lower error rates.

D. Measures and Analysis

The results of the participant surveys are reported in Fig. 5.
A Friedmans test for overall comparison was conducted for
each question, where the robot decision-making mode is the
treatment factor in which we are interested and the task
scenario is the blocking factor whose effects need to be taken
into account but are not of interest. Post-hoc analysis with
Wilcoxon signed-rank tests was conducted with a Bonferroni

TABLE I
QUESTIONNAIRE

Q1 The robot was acting efficiently.
Q2 The robot adapted the strategy when I was in doubt about the task.
Q3 The robot reacted when I made errors.
Q4 The choice of actions of the robot was helpful.

TABLE II
SUBJECTIVE EVALUATION. EACH CELL HOLDS p-VALUES FOR OVERALL

& PAIRWISE COMPARISON. BOLD VALUES ARE STATISTIC SIGNIFICANT.

Overall L vs L vs E vsQuestion
Comparison E LF LF

Q1 0.0009 0.0013 0.8591 0.0004

Q2 < 0.0001 < 0.0001 0.2789 0.0002

Q3 < 0.0001 < 0.0001 0.5525 < 0.0001

Q4 < 0.0001 < 0.0001 0.8552 < 0.0001

correction applied, resulting in a significance level set at
p < 0.017. The p-values are summarized in Table II.

With a statistically significant difference, the participants
agreed more strongly that the robot’s actions were efficient
and helpful in mode L or LF, compared to E (Q1 and
Q4). This supports H1. Interestingly, we observed a higher
variance of the answers for Q1 between the subjects in mode
E. We attribute this to the possible different definitions of
“efficiency” of the participants. While the robot’s actions in
mode E were efficient in terms of the travel-distance, they
failed to convey the robot’s intention clearly and thus resulted
in more steps on average to complete the task, which might
be perceived as inefficient by some participants.

Furthermore, the participants agreed more strongly that
the robot responded when they were in doubt of the task or
made errors in mode L or LF, compared to E (Q2 and Q3).
This supports H2 and suggests that the proposed framework
was able to estimate the human collaborator’s belief and
adjust its policy accordingly. The performance perceived by
the participants seems comparable between the mode L and
LF, however. To support this claim, an equivalence test is
required in future work.

In order to further evaluate the performance of the pro-
posed framework and the hypotheses mentioned above, we
also consider following quantitative measures.
• Task completion steps The total number of steps required

by the human-robot team to complete the task is measured
for all decision-making modes.

• Belief settling proportion During the experiment, the par-
ticipants were asked to give their belief over the task goals
after every robot action. We count the steps from the task
completion where the human continuously has a correct
goal expectation, i.e. the probability assigned to the actual
goal is higher than 0.5, and divide it by the total steps of
the task and refer it to as the belief settling proportion.

• Error rate As a direct measure of a false belief of the
human collaborator, the number of errors during the tasks
is divided by the number of the task completion steps. We
remove the cases across all decision-making modes where
the participants guessed the actual goal correctly and thus
made no errors.
The quantitative measures show that compared to working

with the robot in mode E, when the participants were
working with the robot in mode L or LF, they had a larger
belief settling proportion (Fig. 4(a)) and lower error rates
(Fig. 4(b)) on average, supporting our hypotheses H3 and
H4. As shown in Fig. 4(c), the participants also completed
the task within fewer steps during the task on average in
mode L or LF compared to E. Moreover, we observed that the
variance of the task completion steps between the subjects
was lower in mode L or LF, compared to E. This can result
through the fact that while participants made more errors
in mode E when they had a wrong goal expectation, there
was a certain chance that they guessed the goal correctly
from the beginning and thus completed the task within very
few steps. As this can happen in the other two modes as
well, a lower variance of the task completion steps further
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Fig. 4. Mean and standard deviation of the quantitative measures for three robot-decision making modes.
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Fig. 5. Answers for each question are grouped by three different modes:
L, E and LF. The upper and lower boundaries of the box represent the
Interquartile Range (IQR). Whiskers above and below the box indicate the
maximum and minimum value of the data. Median is marked by the white
circle with a black dot inside.

suggests that the decisions made by the robot in mode L and
LF were more helpful in reducing the potential errors when
the human collaborator had a wrong expectation of the task
goal, as shown in Fig. 4(b).

V. CONCLUSIONS
In this paper we extend the concept of legibility in

motion planning to the domain of sequential decision-making
where continuous trajectories are replaced by discrete action-
sequences. With one of the major challenges being the
human actions as part of the system trajectory, we propose a
framework based on hidden goal Markov decision processes
(HGMDPs) in which the human collaborator’s expectation
of the task goal forms the partially observable variable. As
solving the resulting HGMDP is PSPACE-complete, poli-
cies in reduced fully observable Markov decision processes
(MDPs) are obtained offline, and selected according to the
online human belief estimation in the original HGMDP.

We evaluate our algorithm through dyadic pick-and-place
experiments. In this scenario, the robot deviates from the
spatially efficient policy to make the actual task goal more
clear according to the estimated human belief. The ex-
perimental results confirm the proposed hypotheses with
empirical measurements as well as subjective feedback.

Although our general framework is not limited to a specific
task setup, the state abstraction method is only applicable for
certain assembly scenarios where the potential tasks can be
decomposed into object-position pairs. The belief estimation
in the HGMDP could be further improved by incorporating
richer observations such as eye gaze and hand gestures.
Moreover, as the current algorithm only takes into account
the selection of abstract actions, future work will consider
the integration of legible motion planning into the execution
of those abstract actions.
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